

SYNERGY SCHOOL OF ENGINEERING, DHENKANAL LESSON PLAN SESSION 2025-2026 DEPARTMENT OF CIVIL ENGINEERING

Discipline: Civil Engineering	Semester: 3 rd /W 2025	Name of the Faculty: SATYA PRAKASH ROUT (Lecturer) Email: satyaprakash.13.ce.rout@gmail.com
Subject: MECHANICS OF MATERIAL	No. of Days/week:	Start Date: 141升25・ End Date: 15/11/25・

Week	Class Day	Theory Topics	
1st	1st	Definition of center of gravity -Centre of gravity of Symmetrical shapes (solid/hollow square, rectangular, circular, I Sections)	
	2nd	Moment of inertia (M.I.): Definition, M.I. of plane lamina, Radius of gyration,	
	3rd	section mod- ulus, Parallel and Perpendicular axes theorems (without derivations)	
2nd	1st	M.I. of rectangle & square	
	2nd	M.I. of circle, semicircle, quarter circle and triangle section (without derivations).	
	3rd	M.I. of symmetrical and unsymmetrical I-section, Channel section,	
3rd	1st	M.I. of T-section, Angle section, Hollow sections and built up sections about centroidal axes and any other reference axis.	
	2nd	Polar Moment of Inertia of solid circular sections.	
	3rd	Definition of rigid, elastic and plastic bodies, deformation of elastic body under various forces, Definition of stress, strain	
	1st	Definition of elasticity, Hook's law, Elastic limit, Modulus of elasticity. Type of Stresses-Normal, Direct	
4th	2nd	Bending and Shear and nature of stresses i.e. Tensile and Compressive stresses. Standard stress strain curve for tor steel bar under tension,	
	3rd	Yield stress, Proof stress, Ultimate stress, Strain at various critical points, Percentage elongation and Factor of safety.	
5th	1st	Deformation of body due to axial force, forces applied at intermediate sections,	
	2nd	Composite section under axial loading. Concept of temperature stresses and strain,	
	3rd	Stress and strain developed due to temperature variation in homogeneous simple ba (no composite section)	
6th	1st	Longitudinal and lateral strain	
	2nd	Modulus of Rigidity, Poisson's ratio, Biaxial and tri-axial stresses	
		Poisson's ratio, Biaxial and tri-axial stresses, volumetric strain, change in volume, Bulk modulus (Introduction only). Relation between modulus of elasticity, modulus of rigidity and bulk modulus	
7th			
	2nd	Shear and normal stress components on any inclined plane – Wolf 's choice and the	
1 - I	3rd	Types of supports, beams and loads.	
8 th	1st	Concept and definition of shear force	

SYNERGY SCHOOL OF ENGINEERING, DHENKANAL LESSON PLAN SESSION 2025-2026 DEPARTMENT OF CIVIL ENGINEERING

	2nd	Concept and definition of bending moment	
	3rd	Relation between load, shear force and bending moment (without derivation).	
9th	1st	Shear force and bending moment diagram for cantilever and beams subjected to point londs, uniformly distributed loads and couple (combination of any two types of loading),	
	2nd	Shear force and bending moment diagram for simply supported beams subjected to point loads, uniformly distributed loads	
	3rd	Shear force and bending moment diagram for cantilever subjected to couple	
10 th	1st	Shear force and bending moment diagram for simply supported beams subjected to couple	
	2nd	Shear rorce and bending moment diagram subjected to combination of point load and uniformly distributed load.	
	3rd	Point of contra flexure.	
	1st	Concept and theory of pure bending, assumptions	
11 th	2nd	flexural equation (without derivation), bending stresses and their nature	
	3rd	Bending stress distribution diagram	
,	1st	Concept of moment of resistance and simple numerical problems using flexural equation.	
12 th	2nd	Shear stresss equation (without derivation), relation between maximum and average shear stress for rectangular and circular section	
	3rd	shear stress distribution diagram. Shear stress distribution for square	
13 th	1st	Shear stress distribution for rectangular, circle, hollow, square	
	2nd	Shear stress distribution for rectangular, circular, angle sections, channel section, I-section, T section	
	3rd	Simple numerical problems based on shear equation.	
	1st	Concept of compression member, short and long column, Effective length,	
14 th	2nd	Radius of gyration, Slenderness ratio, Types of end condition for columns, Buckling of axially loaded columns.	
	3rd	Euler's theory, assumptions made in Euler's theory and its limitations	
	1st	Application of Euler's equation to calculate buckling load.	
15 ^{ւհ}	2nd	Rankine's formula and its application to calculate crippling load.	
	3rd	Concept of working load/safe load, design load and factor of safety.	
	1st	Doubt Clearing, Numerical solving & Previous year question discussion	
16 th	2nd	Doubt Clearing, Numerical solving & Previous year question discussion	
	3rd	Doubt Clearing, Numerical solving & Previous year question discussion	

PREPARED BY

PRINCIPAL
Synergy School of Engineering
Dhenkanal

VERIFY BY HOD Civil Engg. Bept. SSE, Dhenkanal